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Abstract
In a previous paper [1] I showed that e7 and eg growth in a drift as calculated by ECALC9 [2];
subsequently, J.S Berg [3] has argued that this emittance growth is caused because a drift is not a
linear element. We show that the non-linearity of a drift is an apparent effect due to the particular

choice of the Hamiltonian function.
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I. INTRODUCTION

The standard Hamiltonian, for a drift, in accelerator physics is
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we show explicitly the canonical variables and the independent variable s. The equation of

motion are
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which can be integrated exactly ( canonical transformation). Obtaining
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J.S. Berg [3] very convincingly showed that, starting with this Hamiltonian, the equation of

motion are non-linear (the square root in Eqs. 3) in the canonical variables and consequently,

we can not expect the emittance to be constant.

II. A RELATIVISTIC Lagrangian FUNCTION OF 4-VELOCITY

It is known that the Lagrangian function and of course the Hamiltonian are not

unique, the necessary requirements are: a) The Euler-Lagrange equations must be either

the Newton equation for free space, or the Lorentz equation for a charged particle in an

external field; and b) both functions must be Lorentz invariant.



An alternative approach that gives a quadratic Lagrangian and Hamiltonian, is briefly

described in a problem by Jackson [4] (se also [5] ). The Lagrangian is

1
L = smUuUy + %AHUM, (4)

where z,, = (,ict) is the 4-position, U, = (y0,ivc) = d;—T“ is the 4-velocity, dr = % is the

proper time and A, = (/T, i®) is the covariant vector potential.

The definition of 4-momentum is

def. OL
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with p, = (p,ipo). The Hamiltonian function is

. of. 1
H(Z, p, ct, po; T) o puU, —L = _(pu - %Au>(pu - %Au>§ (6)

mO
we show explicitly the canonical variables and the independent variable 7. The equation of

motion, for a drift, are:
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p = constant ,  pg = constant.
To compare with Egs. 3 we note that s = 2(7) — 2(0) = £=7 which implies 7 = Z2%;
substituting in Egs. 8 we can write
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P = constant, Ppo = constant.

Formally Egs. 9 are identical to Eqs. 3, however, because our phase space is 8-D rather

than 6-D, the equation of motion for a drift are linear in the canonical variables (Z, ct, P, po)
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with independent variable 7. The emittances will be constant of motion when evaluated at
constant 7 planes. If the question we ask is: what is the emittance at constant s planes?,
the answer will be: it is not a constant of motion unless there is no energy spread, because

in such a case there is a one to one correspondance between 7 and s for all particles.
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