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The fast reduction of the six-dimensional phase space of muon beams is an essential requirement 

for muon colliders and also of great importance for neutrino factories based on accelerated muon 

beams.  Ionization cooling, where all momentum components are degraded by an energy 

absorbing material and only the longitudinal momentum is restored by RF cavities, provides a 

means to quickly reduce transverse beam sizes.  However, the beam energy spread cannot be 

reduced by this method unless the longitudinal emittance can be transformed or exchanged into 

the transverse emittance.  Emittance exchange plans up to now have been accomplished by using 

magnets to disperse the beam along the face of a wedge-shaped absorber such that higher 

momentum particles pass through thicker parts of the absorber and thus suffer larger ionization 

energy loss.  In the scheme advocated in this paper, a special magnetic channel designed such 

that higher momentum corresponds to a longer path length, and therefore larger ionization 

energy loss, provides the desired emittance exchange in a homogeneous absorber without special 

edge shaping.   Normal-conducting RF cavities imbedded in the magnetic field regenerate the 

energy lost in the absorber.  One very attractive example of a cooling channel based on this 
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principle uses a series of high-gradient RF cavities filled with dense hydrogen gas, where the 

cavities are in a magnetic channel composed of a solenoidal field with superimposed helical 

transverse dipole and quadrupole fields.  In this scheme, the energy loss, the RF energy 

regeneration, the emittance exchange, and the transverse cooling happen simultaneously.  The 

theory of this helical channel is described in some detail to support the analytical prediction of 

almost a factor of a million reduction in six-dimensional phase space volume in a channel about 

56 meters long.  Equations describing the particle beam dynamics are derived and beam stability 

conditions are explored.  Equations describing six-dimensional cooling in this channel are also 

derived, including explicit expressions for cooling decrements and equilibrium emittances.  
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I. INTRODUCTION 

The fast reduction of the six-dimensional (6D) phase space of muon beams is an essential 

requirement for muon colliders [1,2,3] and also of great importance for neutrino factories [4,5,6] 

based on accelerated muon beams.  Ionization cooling [7,8] provides a means to quickly reduce 

transverse beam sizes, but the beam momentum spread cannot be reduced by this method unless 

the longitudinal emittance can be transformed or exchanged into the transverse emittance.   

In the scheme advocated in this paper, a muon beam cooling-channel is made of a series 

of RF cavities filled with high-density hydrogen gas, which provides simultaneous emittance 

exchange and transverse ionization cooling by virtue of a superimposed helical magnetic field.  

Coils placed outside of the RF cavities create a solenoidal magnetic field component, which does 

not change direction, and transverse dipole and quadrupole helical components, which change 

direction along the channel axis in the same manner as is found in spin-rotating magnets used in 

Siberian snakes.  The energy loss, the RF energy regeneration, the emittance exchange, and the 

transverse cooling happen simultaneously.  Except for the pressure windows at the two ends of 

the channel, the muons pass only through hydrogen for the most efficient cooling possible.  As 

the beam travels down the channel the RF bunches become shorter and smaller such that higher 

frequency RF cavities with smaller transverse dimensions can be used to allow more efficient RF 

parameters and smaller diameter magnets to enable higher fields and gradients. 

 

 A. Emittance exchange in a homogeneous absorber 

The idea that is the basis of this paper for a 6D cooling-channel is seen in a comparison 

of Fig. 1a and Fig. 1b.   Figure 1a shows a diagram of the usual mechanism for reducing the 

energy spread in a muon beam.  The dispersion of the beam generated by the dipole magnet in 
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Fig. 1a creates an energy-position correlation at a wedge-shaped absorber. Higher energy 

particles pass through thicker parts of the absorber and so have more energy loss than particles of 

less energy.  After the absorber the beam becomes more monoenergetic.  This process is 

emittance exchange, as it is sometimes called, because the transverse emittance must grow to 

allow the longitudinal emittance to be cooled.  In Fig. 1a, the beam is in vacuum except in the 

wedge absorber.  Subsequent RF cavities, also in vacuum, replace the energy lost in the absorber. 

The process is limited by multiple scattering in the absorber and the high-Z windows that isolate 

the evacuated RF cavities and that contain the absorbers. 

 

  

 

 

 

 

 

 

 

 

FIG. 1. a) Wedge Absorber Technique       b) Proposed Homogeneous Absorber Technique.                         

In previous cooling plans, both the emittance exchange process and the transverse 

ionization beam cooling processes have been implemented by sequentially alternating absorbers 

and evacuated RF cavities.  Moreover, the usual 6D schemes require sequential uses of wedge 
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absorbers for emittance exchange followed by unshaped absorbers for transverse cooling 

followed by RF cavities to regenerate the lost energy.   

The new idea advocated in this paper is shown conceptually in Fig. 1b.  In this simpler 

picture, the cooling channel magnets are filled with dense gaseous energy absorber.  The 

magnetic dispersion creates a longer path length for particles of higher momentum.  The longer 

path length, in turn, times the absorber dE/ds gives the energy loss correlation with momentum 

needed for 6D cooling.  Thus a homogeneous absorber, without shaped edges, can be used to 

accomplish emittance exchange. 

A second new idea advocated here is that the RF cavities can be inside the cooling 

channel magnets and operate while filled with the gaseous energy absorber.  Thus the ionization 

energy loss and the RF energy regeneration can be simultaneous rather than sequential.   

 

 B. RF cavities filled with absorber 

The initial concept that a homogeneous absorber, one without shaped edges, would be 

attractive for emittance exchange is related to the development of RF cavities filled with dense 

gas [9].  A project [10] presently underway at Fermilab has demonstrated that an 800 MHz RF 

cell filled with cold, pressurized hydrogen gas can achieve 80 MV/m with exceptionally short 

conditioning times [11].  This project is to study the use of high-pressure gases in RF cavities to 

facilitate large gradients by suppressing high-voltage breakdown by virtue of the Paschen effect 

[12].   A series of contiguous pillbox cavities similar to the one being developed in this project 

could define the helical cooling channel described in this paper. 

Most RF cavities associated with particle accelerators operate in as close to a vacuum as 

possible to avoid electrical breakdown.  This is done so that electrons or ions that are accelerated 
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by the high voltages in the RF cavity rarely encounter atoms of the residual gas, and so the 

avalanche process of breakdown is inhibited.  Other RF systems that do not require the ultrahigh 

vacuum of an accelerator typically suppress RF breakdown by using dense materials between 

electrodes.  Ions passing through these materials, which include high-pressure and/or high-

density gases, have such a short mean free path between collisions that they do not accelerate to 

energies high enough to create an avalanche.  The relationship between the electrical breakdown 

voltage and the gas pressure times gap width is known as Paschen’s Law.   

The gas in the cavities also acts as the energy absorber needed for ionization cooling, 

where hydrogen or helium are the only realistic choices because of their favorable energy loss 

and radiation length.  All things considered, however, hydrogen is superior in all aspects except 

for perceived safety concerns.  Hydrogen gas has over twice the ionization cooling effectiveness 

as helium in that it gives an equilibrium emittance (proportional to ( 1Z )+ ) smaller by a factor of 

1.5 in each transverse plane.  At the same pressure, hydrogen suppresses RF breakdown at a 

voltage that is six times higher than helium.  Hydrogen is also superior in heat capacity and 

viscosity, which are important parameters for the engineering of a practical cooling channel. 

This idea of filling RF cavities with gas is new for particle accelerators and is only 

possible for muons because they do not scatter as do strongly interacting protons or shower as do 

less-massive electrons.  Additionally, use of a gaseous absorber presents other practical 

advantages that make it a simpler and more effective cooling method compared to liquid 

hydrogen flasks in the conventional designs of transverse cooling channels, such as the scheme 

envisioned by the MICE [13] collaboration for a demonstration experiment proposed for 

Rutherford Appleton Laboratory (RAL).   
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 C. Comparison with Ring Coolers 
 

There have been several proposed emittance exchange schemes based on the use of 

wedge absorbers in muon beam accelerators and storage rings [1,2,14].  The most recent 

progress in the study of 6D cooling has been with Ring Coolers (RC), where muons pass several 

times through a small storage ring with dispersion regions for emittance exchange cooling [15].  

RCs are sophisticated devices, where many difficult problems have been addressed using 

combinations of dipole, solenoidal, and quadrupole magnets interspersed with RF cavities and 

energy absorbers of different materials and shapes.  

Although 6D cooling is very much required to satisfy the requirements of a muon 

collider, in the most recent exercises it is looked at more often as a possible way to economize 

the construction costs of a neutrino factory.  In this context, 6D cooling reduces transverse beam 

sizes and bunch lengths so that higher frequency and therefore more economical RF can 

accelerate muons to the energy of the storage ring of a neutrino factory.  This acceleration to the 

storage ring energy in Fermilab and Brookhaven neutrino factory design studies used 

recirculating Linacs, which amounted to more than a quarter of the neutrino factory construction 

costs. 

An RC is in itself a way to economize in that the 15 or so turns the beam makes during 

the cooling process allows equipment to be reused.  A ring is also a rather familiar device for 

accelerator physicists, where tricks for dispersion creation and simultaneous matching of 

transverse and longitudinal constraints are known.  

All RCs share common difficulties.  Injection (and extraction to a lesser extent) is 

particularly troublesome because it requires a kicker magnet with parameters unlike any that 

have been built up to now because the initial beam size is large.  The space in the ring lattice 
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taken up by the injection/extraction system usually causes some problem because it changes the 

symmetry of the ring and displaces RF and absorbers, reducing cooling efficiency.  The RC must 

be designed to accommodate the initial conditions of the muon beam when it is injected.  As the 

beam gets cooled, all six dimensions shrink and the RC is less and less a good match to the beam 

size, especially from the standpoint of dispersion, absorber parameters, and RF frequency.  

Additional difficulties with ring coolers arise from the multiple passes of the beam through RF 

cavities and absorbers, where RF beam loading and absorber heating issues are just being 

addressed. 

Since the cooling channel that we are advocating in this paper is essentially a Linac filled 

with absorber, these difficulties are not issues.  Injection and extraction, matching to the beam 

dimensions as the beam cools, and RF beam loading and absorber heating from multiple passes 

are not problems for a linear cooling channel. 

RCs cannot easily take advantage of the pressurized high-gradient RF cavities being 

developed by Muons, Inc. and IIT at Fermilab.  To effectively use these RF cavities, the entire 

ring would have to be filled with dense hydrogen gas since pressure windows would be 

counterproductive.  Beam passing through areas without RF cavities would then suffer a large 

energy loss. Reducing the gas density could reduce the energy loss, but that would diminish the 

hoped-for gains of the pressurized cavities.  Nevertheless, we note that the idea of using gas-

filled ring coolers is being investigated with encouraging results [16]. 

RCs and the helical channel proposed here are similar in two respects.  First, neither will 

easily accept a beam from a pion decay channel without some transverse precooling, RF 

bunching, and carefully matched injection parameters.  Second, the helical channel has features 
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of a weak focusing storage ring (lying on its side, with an effective field index calculated below), 

where the orbits follow a spiral rather than a circular path. 

 II. GENERAL TECHNICAL APPROACH 

 A. Dipole-generated helical orbits  

The path of a muon traveling down a solenoid is a helix, where the muon momentum 

transverse to the axis of the solenoid generates a projected circular orbit with the usual Larmor or 

cyclotron radius and frequency.  If the muons pass through an energy absorber as is required for 

ionization cooling, the momentum and the cyclotron radius are reduced.  This damping of 

transverse momentum in a solenoid is the basis for most schemes to accomplish transverse 

ionization cooling.  RF cavities add the energy lost in the absorber, boosting the momentum in 

the longitudinal direction.  By reversing the direction of the solenoidal field, the beam can be 

cooled to a smaller emittance, limited only by multiple scattering in the absorber. 

In the proposed channel described in this paper, we wish to have the muons follow a non-

shrinking helical path, even if momentum is lost in an energy absorber, in order to maintain the 

conditions for emittance exchange.  The dispersion, the relation between the helix radius and the 

particle momentum, is the critical parameter of emittance exchange and longitudinal cooling.  In 

the continuous homogeneous absorber that we are proposing, a larger radius means larger path 

length and therefore larger energy absorption.  

One way to maintain an orbit with non-damping radius in the presence of energy loss 

would be to use a series of dipole magnets that would force the muons to bend left, then down, 

then right, then up, etc.  In fact, that would be one solution to achieve the desired behavior, 

where one might add many dipole magnets with fields rotated at angles less than the 90 degrees 

in the previous example to generate an approximate helical motion.  In the following derivations 
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and discussions, this method of maintaining a non-shrinking orbit and positive dispersion would 

be acceptable.   

However, a solution using helical dipole magnets combined with a solenoid is quite 

appealing and we will assume that these will be used in the discussions below.  The technology 

of helical dipole magnets [17] is well known, for example at Brookhaven where helical “Siberian 

snakes” [18] are used for spin control in RHIC.  We note that for initial ionization cooling of a 

muon beam, the helical magnets will require a larger aperture than has been used up to now. 

A helical dipole can be imagined as a superconducting “ cosθ ” magnet wound on a beam 

tube, much like a Tevatron superconducting dipole without the iron.  Now imagine the assembly 

twisted about its axis so that the dipole bending field rotates its direction as the particle passes 

down the tube.  A schematic of a helical dipole magnet [19] is shown in Figure 2. 
 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2.  Schematic representation of a helical dipole magnet showing the coil configuration 

and a cut-away view of the iron flux-return cylinder. 
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In the helical channel described below, the transverse helical fields and the solenoid 

together create and maintain the helical orbit and provide the positive dispersion required for 

emittance exchange and longitudinal cooling.  Transverse cooling also occurs in this channel.  

We will discuss in some detail how the parameters of the helical cooling channel can be 

manipulated to allow the ratio of transverse to longitudinal cooling to be varied over a wide 

range.  

 

B. Helical cooling channel 

Some of the actual theoretical development of this cooling channel was worked out some 

years ago by one of the authors and is available as MuCool Note 108, here reference [14].  In 

that work, the absorber was seen as composed of a homogeneous part and a part with a density 

gradient.  Since the thinking at the time was that the wedge absorber scheme shown in Figure 1a 

should be dominant, especially in that discrete absorbers were always envisioned, the 

contributions from the homogeneous absorber were not considered as significant.  Luckily, the 

ideas and mathematical descriptions become more transparent in the case of a continuous 

homogeneous absorber.  Much of the conceptual simplicity is lost in the case of discrete 

absorbers that must be carefully placed between magnetic coils and between RF cavities. 

The helical channel in its most idealized form would be a twisted or helical magnet added 

to a solenoid.  The helical dipole field superimposed on a solenoidal field creates a helical orbit 

with some amplitude (which depends on longitudinal momentum of the particle, dipole strength, 

and solenoid strength) and frequency (related to the rate the helical dipole is twisted in turns/m, 

where we define k = 2π turns/m with a wavelength or period 2 / kλ π= ). 

For a given beam momentum, one can vary the solenoid field and the strength and twist 

period of the helical dipole field.  (The hydrogen gas energy-absorber density is also a free 
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parameter provided the density is sufficient to suppress RF breakdown at the required level.)  As 

we will indicate below, the helical field that must be superimposed on the solenoidal field must 

have a quadrupole component in addition to the dipole component in order to give the beam 

additional stability.  This component could be added with “ cos 2θ ” quadrupole magnets having 

the same twist period as, and superimposed on, the helical dipole coils 

It is important to note that the direction of the solenoidal field does not change in the 

cooling channel described below.  This is an essential difference between the helical dipole 

method and the solenoidal schemes with alternating field directions that have been envisioned up 

to now.  This may also be some technical advantage to the extent that the large magnetic fields 

on the superconducting coils at the field reversal regions can be eliminated.  Although a 

discussion of technical issues should follow the complete analysis of beam dynamics and 

cooling, we note that the use of continuous (or long) solenoids inherent in the helical concept 

should allow a higher maximum effective longitudinal field than that of schemes with alternating 

solenoidal field directions. Consequently, the helical scheme will achieve a smaller equilibrium 

emittance, faster cooling rate, and decreased particle loss from decay. 

 

III. HELICAL ORBIT DYNAMICS 

Beam dynamics in a helical channel has been studied for free electron lasers using a 

specific structure with only odd transverse field harmonics and a solenoid [20] and for a structure 

including a quadrupole harmonic but no solenoid [21].  Below we reproduce an analysis 

performed earlier [14] for the general case.  In developing the cooling theory for a helical beam 

channel, the only important requirement is that the beam size σ⊥  should be small with respect to 

the helix parameter.  A small beam momentum spread is not assumed.   
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 A. Notation 

In this paper it is assumed that: 

1 1e c− = , = ; 

pG  is the particle vector momentum;  

2 2
2

11E m p mγ β γ= = + ; = −  ; 

2k π λ= / , whereλ  is the transverse field period, and also the helical orbit period;  

a  is the helix orbit radius (a function of p );  

kaκ =  is a  in terms of 2λ π/ , such that / zp pκ ⊥= for the periodic orbit;  

daD p
dp

=  is the dispersion;  is the dispersion factor ; D̂ D a= /

x y z, ,  is the Cartesian laboratory frame;  

( )x yρ = ,
G  is the particle transverse coordinate relative to the structure axis;  

ρ  and ϕ  are the axial coordinates:  

 ix iy e ϕρ+ = ;  

x̂  is the complex transverse coordinate relative to the helical frame:  

 ˆ ( ) [ (ikz )]x x iy e exp i kzρ ϕ−= + = − ;  

B  is the solenoid field;  

21ck B κ= + p/

1

)

;  

( )cq k k= / − ; 

b  is the transverse magnetic field value at the periodic orbit;  

(b x y z, ,
G

 is the 3-vector of the periodic field:  
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 ( ) (b x y z b x y zλ ), , + = , , .
G G

 

The relationship between the helical magnetic field in the two frames is:  

( ) i
x yb ib b ib e ϕ

ρ ϕ+ = + , 

where b bρ ϕ, ,  and  are functions of only zb ρ  and kzψ ϕ≡ − ;  

Q+  and Q  are Q -values or tunes i.e. transverse oscillation frequencies about the periodic orbit;  −

ψ+  and ψ−  are the phases of free transverse oscillations ( )kQψ ±±′ = ;  

I+  and I−  are the corresponding action variables (adiabatic invariants, or generalized Courant-

Snyder invariants);  

+Λ  and  are the transverse cooling decrements (−Λ II ± ± ±= −Λ′  after averaging over )ψ± ;  

γΛ  is the energy cooling decrement:  

 
d

dγ γ
γ

′Λ = − < > , 

where the brackets <  mean averaging over free transverse oscillations (i.e. ... > ψ± ) and . z

Figure 3 shows some of the important geometrical relationships between the magnetic 

fields and particle coordinates used below.   Consider a particle of momentum p  at a radius of 

in a stable helical orbit about the axis of the structure, which is parallel to the solenoidal 

field B.  The parameter 

( )a p z

/ zp pκ ⊥=  is the tangent of the pitch angle of the helical orbits.  In the 

numerical example in chapter VI, this angle is 45 degrees and 1κ = as shown in the figure.  The 

transverse helical dipole field  is orthogonal to the axis and to the radius vector .  The 

transverse momentum of the beam is generated by the initial conditions so that the helical dipole 

magnets maintain the helical motion by providing a deflection toward the center of the solenoid, 

something like a centripetal force. 

b z a
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B
G

zp

( )a p  

p⊥

b
G

pG

 

 

 

 

 

 

  

FIG. 3.  Diagram of important relationships.  The solenoidal field B  is para

axis.  At the periodic orbit, the transverse helical dipole field b  is orthogon

radius vector .  The pitch angle of the helix is the arc tan of a / zp pκ ⊥= . 

 

 

 

 

 

 

 

 

FIG 4.  Illustration of motion of the beam envelope about the structure z-ax

parallel to the solenoidal field.  The motion is inside the energy absorber, w

to fill the volume of a contiguous series of pillbox RF cavities inside the mag

the helical channel.   
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Figure 4 is an illustration of how the beam envelope moves around the structure axis 

under the influence of the transverse dipole and solenoidal fields.  The periodic equilibrium orbit 

is a helix of constant radius; particles oscillate transversely about this orbit and oscillate 

longitudinally with respect to the RF with frequencies or tunes as described below. 

 

 B. Helical field 

A static magnetic field in vacuum can be represented as a gradient vector of a scalar 

function:  

 b U= ∇ ,
G G

 

where U r  satisfies the equation  ( )G

 2 0U∇ = .  

In the case of a helical structure, U  should reflect helical invariance by being a function 

of kzψ ϕ≡ −  and ρ :  

 ( ) ( )U r U ρ ψ= ,
G

. 

Then  

 and z
U Ub b b k bρ ϕ ϕρ
ρ ρ ϕ

∂ ∂
= , = , = −
∂ ∂

.  

The Fourier expansion  

 
0

( ) iU U eρ Ψ

≠

=∑ A
A

A
 

leads to an equation for U ( )ρA :  

 2 2
2

1 1( ) ( )d Ud k U
d d

ρ
ρ ρ ρ ρ

0− + =A
AA . 

A solution regular at 0ρ =  is a modified Bessel function:  
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 ( )U const I kρ= × ,A A A  

 
2

20

( ) 1
2( 4)( )

2 ( )
2

n

t
n

t t
t tI t

en n t
tπ



∞ 



= 



/ !, <<
/ = →  ! + !  , >>

∑
A

A

A

A

A A
 (III.1) 

 

Each harmonic is independent and corresponds to a current distribution  

 i
zj j eϕ

Ψ, ∝ A  

The most important harmonics are the dipole ( 1=A ),  

 

1

1

2 ( )

2 ( )
d

d

z

b b I k cos k

b b I k sin
b k b

ϕ

ρ

ϕ

ρ ψ ρ

ρ ψ
ρ

= /

′=
= −

 (III.2) 

and quadrupole ( ):  2=A

 

2
22

2

2

(2 )( ) 2(

1 ( ) (2 ) 2(

.

o

o

z

b I kb cos
k

b
b I k sin

k
b k b const

ϕ
ϕ

ϕ
ρ

ϕ

ρ ψ ψ
ρ ρ

2

)

)ρ ψ ψ
ρ
ρ ψ

∂
= −

∂
∂ ′=
∂

= − , =

−  (III.3) 

Sextupole ( A ), and octupole (  harmonics might be needed for particular improvements.  

We note that this description corresponds to a field produced by simple external conductors and 

that other helical configurations of conductors are possible that would best be described by 

complementing the field description above with MacDonald functions.  In fact, our 

considerations below rely only the helical invariance of the fields and not on the details of the 

magnet design. 

3= 4)=A
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 C. Equations of motion in a helical field 

Here we derive the equations of motion in absence of absorbers and RF fields.  Since the 

corresponding forces for absorbers and RF are weak, these effects can be treated using 

perturbative methods after the magnetic dynamical problem is solved.  The Cartesian coordinates 

are the two transverse coordinates x y, , and the longitudinal coordinate  which coincides with 

the axis of the magnetic structure, having unit vectors e e

z

x y e z, ,G G G .  Using the definitions and 

relationships from above and 

 ( ) ( ) ( )z
dz dz dt dz x
dt dz

β ρ′≡ , = , ≡ , = , yG� , 

 
2

1
1 ( )

z z
z

ppp
p

βρ
β ρ

⊥ ′= , = =
′+

GG
G , 

let us rewrite the initial Lorentz equation  

 ( )zp Be b β= + ×
G GG G�  

in complex form with  

 2 1u x iy i= + , = − :

)y

 

namely, 

 ( ) ( ) (z z xp u i B b u i b ib′ ′ ′= + − +  (III.4) 

 
2

2 3 2

1 ( )
2 (1 )z

up p
u /

′ ′| |′ = −
′+ | |

. (III.5) 

Next, transform equation (III.4) to the rotating (helical) frame 1 2x x z, ,  with unit vectors 

, where the subscript 1 corresponds to the radial coordinate and field directions 

and the subscript 2 is indicates the azimuthal coordinate and field directions. 

1 2( ) ( ) zz ze e e, ,G G G

Using the relationships  

 1 2ˆ ikzx x ix ue−≡ + =  , u x , ˆ ˆ( ) ikzikx e′ ′= +
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 1 1 2 2x yxe ye x e x eρ = + = +
G G G G G

, 

 1 2( ) ikz
x ye ie e ie e+ = +
G G G G

, 

1 2( ) ikz
x yb ib b ib e+ = + , 

we find 

  (III.6) 2
1 2ˆ ˆ ˆ ˆ ˆ( 2 ) ( )( ) ( )z zzp x ikx k x iB ib x ikx i b ibp′′ ′ ′′+ − + − − + + + = 0

with  

 
2

2 3 22

ˆ ˆ1 ( )
ˆ ˆ2 (1 )ˆ ˆ1

z z
p xp pp

x ikxx ikx /

ikx′ ′| + |′= , = −
′+ | + |′+ | + |

. 

Recall that  

 2 1 1 2( )zb k x b x b= − ,  

and the transverse field components  and b  are functions of only 1b 2 1x  and 2x , but not .  Thus, 

the helical dynamics is conservative, although the equations are coupled and non-linear.  

z

 

 D. Helical orbits 

 1. Periodic orbits 

The periodic orbit is determined as a solution of (III.6) at  

 

1 2

2 2 1

2

0
i e 0 0

( ) ( 0) 0

.
1

z

const a x a x
const k

b b ka b b
pp

ρ
ϕ ψ

ψ

κ

= ≡ , = , =
′ ′= = , . . = , =

= ≡ , = =

=
+

ψ
 

The equilibrium equation is obtained as follows:  

 
2 3 2(1 )1ck b

k kp
κ
κ

/+
− = , (III.7) 

or  
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2 21 1( )p a B

k
κ κ

κ
b

 + +
= − 

 
, (III.8) 

or   

 2 21
1 1c

b k
B k

κ κ
κ κ

   
= − =   1

q
q + + +  

. (III.9) 

 2. Dispersion 

The dispersion factor  

 ˆ p daD
a dp

=  

plays a key role in the emittance exchange effect. It can be found immediately using the 

equilibrium equation (III.8):  

 
1

p da a dp
a dp p da

−
 

= ; 
 

 

the result can be expressed as:  

 
2 2

1
2

(1 )ˆ
1

q gD
κ κ

κ
− + −
= +

+
 (III.10) 

where the effective field index at the periodic orbit is 

 
2 3 2

2

(1 ) bg
pk a
κ /− + ∂

≡
∂

. (III.11) 

Note, that the dispersion factor  does not vanish at a , while the dispersion  

disappears.  

D̂ 0→ ˆD Da=

 

 E. Transverse oscillations about the periodic orbit 

1. Tunes of the helical orbits 

Consider a position u u  relative to the periodic orbit  1 2,
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 1 1 2( )u x a p u x2= − ; =  (III.12) 

Assume  and also 1 0b = 2b
ψ
∂

=∂( )  at 0 0ψ = .  After a linear expansions of equation (III.6) with 

 ( ) ( )2 22 2 2
1 2 1 2( ) 1k u u u u′ ′ 1+ << , + << , (III.13) 

and taking into account the field laws and equilibrium relationship in (III.7), we obtain two linear 

equations:  

 2 1
1 22

1 ˆ 0
1
qu ku k D u
κ

−
1

−′′ ′+ +
+

=

2 0

, (III.14) 

and 

 . (III.15) 2
2 1( 1) ( )q ku k q g uu ′− − + − =′′

These equations are conservative but coupled. The coupling is due to a difference 

between the Coriolis force and the non-equilibrium part of the Lorentz force of the solenoid.  At 

,  and u  become decoupled (in linear approximation). The solution of these equations 

can be found as eigenvectors 

2ck = k 1u 2

 1 1 1

2 2 2

atikQzu c c
e const

u c c

     
     
     
          
     

= , = ,

0

 

where we obtain the zero determinant equation:  

 4 22Q Q R G− + = , (III.16) 

with  

 ( )
2

1
2

2ˆ ˆ
1
qG q g D D Dκ
κ

1 1ˆ− − +
≡ − = − + 

−
  (III.17) 

and 

 
2

2

1 1
2 1

qR
κ

 
≡ + + 

 . (III.18) 
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Thus, the -values are found:  Q

 2 2 2Q Q R R G±= ≡ ± − , (III.19) 

 

and the stability area is established:  

 20 G R< < . (III.20) 

Note that  

 2 2Q Q G+ −⋅ = , (III.21) 

while  

 . (III.22) 2 2 2Q Q R+ −+ =

 2. Transverse oscillations 

Using equation (III.14), we find the normal oscillation behavior:  

 

1

1

2

2

( )

u cos
kQ sinuX a

u Q sin
k cosu

ψ
ψ

α ψ
α ψ

±

± ±
± ±

± ± ±

± ±±

−′≡ =
/

′

, (III.23) 

 

where , a const± = Q kz constψ± ±= + , and  

 
2

2 11 ˆ( )
1

Q D
q
κα −

± ±

+
= −

−
. 

We note the useful relationships:  

 2ˆ (1 )Dα α+ − = − +κ  (III.24) 

and 

 
2 2

2
2

2
1 1

Q Q R G
q

α α
α α κ

+ − + −

+ −

−
− = = −

+ −
. (III.25) 
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The general solution X  is a sum of X ±  and the helix path:  

 

1

1

2

2

( )
0
0
0

x a p
x

X X
x
x

+ −

′
= + +

′

. (III.26) 

 

 3. Amplitudes 

The solution in (III.23) can be treated also as a transformation from 1 1 2 2,x x x x′ ′, ,  to 

variables of amplitudes and phases of normal mode oscillations. This is reasonable to the extent 

that perturbative forces related to non-linearities or non-adiabatic changes of fields and absorbers 

are small during a single oscillation period.  The squared amplitudes are of primary importance.  

The transformed relationships can be easily found using (III.23) and (III.26):  

 2 1( ) ( )x k x a ka cosα α α ψ± ±′ − − = −∓ ∓ ± , (III.27) 

and 

 2 2 2
1 2

1 ( )x kQ x Q Q ka sin
Q

α α α ψ± ± ±
±

′ + = −∓ ∓ ∓ ∓ ± . (III.28) 

Thus,  

 
2 2

2 2 22 1 1
2 2

[ ( )] (
( ) (

2
2
2 2

)
)

x k x a x Q kxk a Q
Q Q

α α
α α α α

− −
+ +

+ − + − − +

′ ′− − +
= +

− −
−  (III.29) 

and 

 
2 2

2 2 22 1 1
2 2

[ ( )] (
( ) (

2
2
2 2

)
)

x k x a x Q kxk a Q
Q Q

α α
α α α α

+ +
− −

+ − + − − +

′ ′− − +
= +

− −
+ . (III.30) 
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 4. Transverse adiabatic invariants 

The effective beam volume in phase space is measured in terms of action variables, or 

adiabatic invariants I± , canonically conjugate with the oscillation phases ψ± . They are 

proportional to squared amplitudes:  

 21
2

I kQ a Rβγ± ± ± ±= ⋅ , (III.31) 

where we have introduced the coefficients ( )R E± . To find them, one can use the canonical 

relationships (see the Appendix):  

 ( ) (I E t IPE
)ρ ψ

ψ⊥± ± ±
±

∂ ∂
, , = − ,

∂ ∂
GG

, (III.32) 

where the energy ( ) and time ( t ) are considered as one of three “old” canonical pairs, 

together with 

E−

p⊥

G  and ρG  (while the  coordinate is treated as the “time argument”). To 

determine the time t  as function of “new” variables (

z

)a ψ± ±, , one has to integrate the equation  

 
1

z

t
β

′ =  

along a “solved” particle trajectory.  In linear approximation for free particle oscillations near the 

helical orbit  we have (see the Appendix) ( )a p z,G

 
2

1 1ˆ
1

t t a sin a sin
Q Q
α ακ ψ ψ

β κ

 
 + −



+ + − 

 + − 

+ +
= + +

+
−

ˆ .const′ =, t , (III.33) 

where we have introduced a “shortened time” t  as a new canonical variable conjugate to the 

energy, -E, which commutes with 

ˆ

I±  and ±Ψ .   Using the relationships (III.28) and (III.33), the 

shortened time can be expressed as a function of initial variables: 

 1 22

1 1 ˆˆ 1
11
qt t Dx D xκ
κβ κ

2
 −  ′= + + −  +  +

. (III.34) 
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Note that the rate t  changes is constant on a particle trajectory in a magnetic field.  ˆ

Returning to the derivatives 
2a

E
±∂

∂
, they can be found using the relationships in (III.31) 

through (III.33), in which the variables of the rotating frame ( 1 1 2 2 )x x x x′ ′, , ,  are to be considered 

as functions of ( ) ( )x yx p y p, , , , and energy .  The calculation in the Appendix gives E

 
2

2
2

12 (1 )aa
E E

ακ a cosψ
β α

±
±

±

+∂ +
=

∂
∓ ± ± . (III.35) 

Using equations (III.31), (III.32), and (III.33) gives  

 2 3 2 2(1 )
R

Q
α α α
κ
± +

± /
±

−−
= ± ⋅

+
. (III.36) 

Thus solutions and relationships (III.27) through (III.36) provide a full set of canonical 

transformations from the initial variables ( ),p rG G  to action and phase variables in a magnetic field 

before an RF field has been introduced. 

 

5. Beam envelopes on a helical orbit 

In the rotating frame of the helical orbit, each of the two normal mode oscillations is 

recognized in transverse space as an elliptical orbit with tune Q+ or Q−  (see equation (III.23): 

 
( ) ( )

1 1

2 2

cos cos
,

/ sin / sin
u u

a a
Q Qu u

ψ ψ
α ψ α

+
+ −

+ + + − − −+ −

= =
ψ

−
. (III.37) 

With random phase distributions, there are two normal beam ellipsoids of aspect ratios 

 1 1

2 2

,Q Qσ σ
σ α σ α

+ −

+ −+ −

   
=   

   
= . (III.38) 

For ensembles with adiabatic invariants I± , one can average over ψ±  to find the related sizes 1σ  

and 2σ : 
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 ( ) ( ) ( ) ( )
2

2 2
1 2,I Q

k Q
ασ σ

γβ α α α
± ± ±

± ±
± + − ±

 
= ± =  −  

2
1σ ±

. (III.39) 

Thus, 1σ  and 2σ  rms sizes can be explicitly found as determined by the two canonical 

(and uncorrelated) emittancesε+  and ε−  by substituting for I±  with I ε± ±= into (III.39) and 

adding a contribution due to energy spread:  

 ( ) ( ) ( ) ( )
2

2 2 22 2 2
1 1 1 2 2,pD

p
2

2σ σ σ σ σ σ
+ − +

 ∆
= + + = + 

 
−

 (III.40) 

The canonical emittances, ε± , will not be disturbed by an adiabatic change of beam 

optics parameters along the beam path in the helical transport line.  These uncorrelated 

emittances (i.e. the averaged values of adiabatic or generalized Courant-Snyder invariants) also 

can be conserved in transfers from the helical channel to sections with different optics, such as a 

conventional alternating gradient transport with uncoupled planes.  However, special optics will 

be needed to match such a transition in order to avoid an increase of beam emittances. 

 

 F. Longitudinal oscillations in an RF field 

An RF field has to be applied to compensate for energy loss in an absorber to achieve 

substantial ionization cooling.  Thus the beam must first be captured and bunched before the 

cooling described in this paper can be accomplished.  The capture and bunching processes will 

be described in a paper to follow this one.  In this section we introduce the basic characteristics 

of longitudinal dynamics of particles in a bunched beam subject to an RF field on a helical beam 

path without absorber. 
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 1. Basic equations 

Longitudinal motion of particles in an RF field is governed by equations for energy E and 

time t as a pair of canonically conjugate variables, with the z coordinate considered a time 

argument and the RF wave number expressed in terms of the RF cavity resonant frequency 

and particle longitudinal velocity, 

rfk

/rf zk ω β≈ . 

Assuming, as usual, that the change of particle energy along one period of magnetic and 

electric field and “betatron” oscillations is small, we can express the equations in terms of energy 

and shortened or average time t, given by equations (III.33) and (III.34).  A convenient variable 

is a reference time 

 ( )ˆ /rft k zτ ω= − . (III.41) 

Note that the rate of change of t  as a function of is not influenced by particle transverse 

oscillations in a focusing magnetic field.  Neglecting the phase 

ˆ z

ωτ  and the rate of change of 

energy on transverse amplitudes, we obtain the shortened canonical equations: 

 max sin SHγ γ ωτ
τ
∂′ ′= − = −
∂

 and (III.42) 

 21 1 rf
S

k
Hτ κ

β ω
∂′ = + − =
∂γ

, (III.43) 

where 

 2 max1 1 rf
S

k
H d γ cosκ γ

β ω ω
′ 

= + − − 
 
∫ ωτ  (III.44) 

is the effective longitudinal or synchrotron Hamiltonian, and maxγ ′ is the maximum rate of energy 

change due to the RF field. 
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The Hamiltonian and equations (III.42) and (III.43) determine the equilibrium phase 

0ωτ = , the equilibrium or resonance energy resγ  such that 

 21 1
res

rfk

γ γ

κ
β ω=

 
+ = 

 
 , (III.45) 

and the phase space trajectory of particle oscillations around the equilibrium orbit where 

 ( ),SH constγ τ = .  (III.46) 

 

 2. Translational mobility of a particle on a helical path 

For a particle of energy E mγ= , the rate of change of phase is given in linear 

approximation by 

 ( )ˆ resτ η γ γ η γ′ = − ≡ ∆  (III.47) 

where we have introduced a new parameter, η , the translational mobility: 

 
2 2 2

3 2

1 1 ˆ
1

d D
d

κ κ κη 2

1
γ β γ β κ γ

 + +
= =  + 

−  . (III.48) 

This parameter is analogous to the momentum compaction factor in a synchrotron, where the 

factor 
2

2
ˆ

1
Dκ

κ+
 can be identified with 2

1

transitionγ
. 

 

 3. Synchrotron tune 

The rate of change of energy for a particle with phase ωτ  is given in linear 

approximation by 

 maxγ γ ωτ′ ′∆ = − . (III.49) 
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Equations (III.47) and (III.49) determine the synchrotron tune, the frequency of phase and energy 

oscillations near the equilibrium where 0τ =  and resγ γ= : 

 , and Q2 2 0SQτ ω τ′′ + = 2
max /S ηγ ′= ω . (III.50) 

 

 4. Synchrotron adiabatic invariant, canonical phase, and admittance 

The adiabatic invariant of oscillations about the equilibrium is determined as an area in 

phase space bounded by the ellipse given by equation (III.46): 

 
1

2SI dγ τ
π

= ∆∫v . (III.51) 

For a small oscillation near the equilibrium, SI  is proportional to the Hamiltonian function: 

 ( )2 2

2 2
S

S
S S

H QI
Q Q

Sωη γ τ
ω ω η

≈ = ∆ + . (III.52) 

More generally, there is the relationship 

( )S S SdH Q I dIω= S

)

 

with Q I  as the amplitude-dependent synchrotron frequency that takes into account the non-

linear behavior of the RF field as a function of phase 

(S S

ωτ .  A canonical variable conjugate to the 

synchrotron invariant SI  is the synchrotron phase SΨ , which varies uniformly on an 

unperturbed orbit: 

 ( )S SQ Iω′Ψ = S . (III.53) 

The maximum SI  value for captured particles, the admittance, corresponds to oscillations near 

the synchrotron separatrix: 

 max
SH γ

ω
′

= ,  and ( ) max2
S adm

I γ
πω ηω

′
=  (III.54) 
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On the separatrix trajectory, the frequency  is zero due to the points SQ ωτ π= ± .   

 

 IV. COOLING DECREMENTS 

 A. Absorber drag force  

Muons passing through an absorber experience energy and momentum loss due to 

collisions with electrons.  The collision effect averaged over impact parameters is described by 

the well-known formula for the drag force: 

 
4

2

4 l,
e

F p Znep F
p m

π
β

−
= =

ogGG� , (IV.1) 

where Z and n are the absorber atomic number and concentration,  the electron mass, andem β  is 

the muon velocity.  Here log is a symbol for the Coulomb logarithm of ionization energy loss for 

fast particles:  

 
2

22log ln p
h mµ

β
ν

 
≡ −  

 
, (IV.2) 

with hν  the effective ionization potential [22].  A typical magnitude of the log is about 12 for 

the conditions described below. 

Similar to the radiation force for relativistic electrons in a magnetic field, the drag force 

produces a damping effect on muon transverse oscillations in a focusing field: 

0 0 2, Fp p
mµγ β⊥ ⊥′ = −Λ Λ =

G G . 

Unlike the radiation force, however, the drag force cannot damp the beam energy spread since its 

characteristic energy dependence, , is negative or is too small when it is positive 

( ): 

/dF dE

2 logγ >
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( )( ), /E F E E dF dE E′ ′= − ∆ = − ∆ , 

 ( ) ( )2

0 2

1 /1/ 2
log

dF dE
β γ

γ

 −
= Λ − + 

  
. (IV.3) 

To achieve longitudinal cooling requires emittance exchange with transverse oscillations 

as discussed in Section II.  Emittance exchange, in turn, requires the introduction of a beam bend 

that creates dispersion, a correlation between the orbit and energy of a particle.  Use of a 

continuous homogeneous absorber, rather than wedges at discrete points, implies a positive 

dispersion along the entire cooling path, a condition that we have shown exists for an 

appropriately designed helical dipole channel.  We have also shown that this condition is 

compatible with stable periodic orbits. 

The linear theory of the damping process including wedge effects was developed earlier 

[15] and later applied and developed in some detail for a homogenous absorber [14].  The 

treatment in this paper follows the analysis in these previous works but includes more detail.  

Below we will calculate the longitudinal and transverse damping rates along a helical transport 

line in a homogeneous absorber with RF fields.  As an example of how the cooling rates can be 

manipulated, we will then indicate how to achieve balanced 6D cooling, where the three 

decrements are equal. 

 

 B. Longitudinal decrement 

 1. Synchrotron oscillations in the absorber 

Energy loss due to muon collisions with absorber electrons can be included after 

averaging over collision parameters and transverse oscillations about the energy-dependent 

helical orbit: 
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 2
max sin 1F

mµ

γ γ ωτ′ ′= − − +κ . (IV.4) 

Expanding energy loss in a linear approximation as a function of energy near the 

reference orbit, we obtain synchrotron oscillation equations: 

 ( )sin sin eq γγ γ ωτ ωτ′′∆ = − − −Λ ∆γ , (IV.5) 

where 

 2
max sin 1

res

eq
F

mµ γ γ

γ ωτ κ
=

′ = − +  (IV.6) 

and we have introduced the energy decrement as 

 
( )( )2

2
2

02

2 1 /2 ˆ1
log 1

d F D
d mγ

µ

β γ κκ
γ γ 2κ

 −< >  Λ = + = − + + Λ
 +
  

. (IV.7) 

For positive γΛ , synchrotron oscillations will damp with a characteristic exponent γΛ .  Note 

that the synchrotron oscillations in the absorber may last some time since 

 SQγ ωΛ � , (IV.8) 

where 2
max coss eqQ ηωγ ωτ′= . 

The relationship (IV.8) follows from the condition resγ ωγ′� , taking into account that 

max / resγ γ′Λ ∼ unless the translational mobility parameter η  is very small.  Consequently we can 

continue to treat the phase ωτ  and energy motion in terms of oscillations even though the 

reduction in the synchrotron potential well might not be small ( F mγ ′≤ ).  We can characterize 

the oscillations by a modified synchrotron adiabatic invariant as determined by the integral in 

(III.51), but with a Hamiltonian 

 ( ) (2
max

ˆ cos sin /
2 eqH )η γ γ ωτ ωτ ωτ′= ∆ − + ω . (IV.9) 
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Damping due to an emittance exchange mechanism can then be considered a slow process. 

 

 2. Synchrotron oscillation decrement 

Under condition (IV.8) one can calculate the damping rate of SI  using a perturbative 

method.  Considering the adiabatic invariant a function of γ∆  and ωτ  we find the instantaneous 

and average rates of change of the adiabatic invariant: 

S
S

II γ γ
γ

∂′ = − Λ ∆
∂

. 

Using the canonical relationship S

S

I τ
γ

∂ ∂
=

∂ ∂Ψ
and taking into account that 

( )S S
S S

Q IS
τ ττ ω∂ ∂′ ′= Ψ =

∂Ψ ∂Ψ
, 

we find a simple damping equation: 

 / 2S SI dγ γ τ π′< >= −Λ ∆ = −Λ Iγ∫v . (IV.10) 

Note that the linear reduction of the Hamiltonian has not been used in this derivation.  

Thus in the approximation of a constant energy decrement as in (IV.5), the non-linearity of 

synchrotron oscillations does not affect the cooling rate. 

Note, finally, that the instantaneous rate of change of phase ω τ  is influenced by the 

transverse component of the drag force ( 1x ′∼ ) according to equation (III.34), but the average 

effect is zero: 

1
1

ˆ
0t x

x
τ δτ τ ∂′ ′< > < >=

′∂
∼ . 
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 C. Transverse decrements 

To derive the transverse rates, we have to calculate the average partial power I±′< > .  

This can be easily done considering I±  as functions of transverse vector momentum p⊥

G , 

coordinate ρG , and energy E mγ= :  

 
1

z

I II Fp
γ

β γ
± ±

⊥±
⊥

∂ ∂′ ′= + ⋅
∂ ∂

G
G , (IV.11) 

with  

 21 ( )z FF F F
mµ

ρ ββ γ
β β
⊥

⊥

′
ρ′ ′= − ⋅ = − , = − +

G GG G
. (IV.12) 

We avoid the derivation of the expressions ( )I E zp ρ± ⊥, , ,
GG ; instead, we use the canonical 

relationships shown in the Appendix, (IX.6) and (IX.7), then  

 21 1 ( )tI F ρρ
β ψ ψ

ρ
 
 
 ±  
 ± ± 

∂ ∂′ ′= − − +
∂ ∂

′
GG G

. (IV.13) 

Thus, we can simply use the solutions in (III.23) and (III.33) in order to perform averaging over 

the phases ψ± .  Note that  

 
ˆˆ( )xRe xρρ

ψ ψ

∗

± ±

∂ ∂′ ′=
∂ ∂

GG and 

 2 2
1 22

1 ( ) 1 ( )
1

ku uκρ κ
κ

′+ ≈ + + +
+

G ′ . (IV.14) 

The force  has to be taken as shown in (IV.12).  The right parts of equations (IV.11) 

after averaging over 

F

ψ±  become proportional to 2a±  (see (III.23)), i.e. the cooling decrements can 

be defined:  

 II ± ± ±< >= −Λ ,′  

taking into account (III.31).  Performing the averaging, we find:  
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2 2

2 2
2

1 2
( ) 1o

Qκ κα α α
α α α κ

2(1 )
 
 ±
 ± ± ± ± 

+ − ±  

Λ +
= ± + + − +

Λ − +
. (IV.15) 

Taking into account relationships in (III.24) and (III.25), we find the sum of transverse 

decrements:  

 
2

2
ˆ2

1o

Dκ
κ

+ −Λ +Λ
= −

Λ +
. (IV.16) 

Combining all the three decrements, we find:  

 2
0

1 ˆ2
2o

p log
log pγ

22β β+ −

 ∂
Λ +Λ +Λ = Λ ⋅ + ≡ Λ = Λ ∂ 

, (IV.17) 

where we have introduced the parameter  

 
( )2

2 2 1 /1 logˆ
2 log log

p
p

β γ
β β β

−∂
= + = +

∂
, (IV.18) 

although in the following we will not distinguish between β̂  and β , assuming  

2 1
2

p log
log p

β ∂
∂

� . 

This result (IV.17) agrees with the dissipation theorem [23,24,25]:  

 
3

1

1 ( )
z

F p r
pα

α β=

∂
Λ = − < , > .

∂∑
G G G

G  

The distribution of the two transverse cooling rates is characterized by the difference + −Λ −Λ .   

Using the definitions α± , etc., we obtain:  

 2 2
22

1 1ˆ1 ( 1)
1o

q RD
R G

κ
κ

+ −Λ −Λ = − + −Λ +−
 . (IV.19) 

 

D. Equating the cooling decrements 

If the three cooling decrements are equal, 
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3γ + −Λ = Λ = Λ = Λ/ , 

then  

 
2

2
2

1 2ˆ 2 1
3

D κ
β

κ
+  = −

 
  (IV.20) 

and  

 
2

2
11
3

ckq
k

κβ
β

+
≡ − =

−
. (IV.21) 

As follows from formula (III.10), conditions (IV.20) and (IV.21) also determine the 

effective field index  as a function of g κ  and β :  

 
22 2 2

22 2

1 1 4
1 2(1 )3 3

g κ κ κ ββ
κ κ 2

3
2β β

− +
= − +

+ +− −
−

. (IV.22) 

Condition (IV.21) indicates the necessity of sufficiently strong solenoidal and dipole fields 

according to equations (III.7) or (III.9), while condition (IV.22) determines the quadrupole 

strength.  

The balanced cooling area in terms of parameters κ  and β  can be limited by the 

dynamical stability condition (III.20), which can be rewritten as  

 

1 2 222 23 2
2 34

2 2 2 21
3

(1 )1 (1 )0
43 3 2 (1

κ κ βββ κ
κβ β

/     −−+ + < + <   − − −    

2

2)β
 . (IV.23) 

In the region , the periodic orbit seems to appear stable at any  value, although for 

 condition (IV.21) also leaves the beam stable in a wide range of .  Note, however, 

that if is too small then the beam stability is worse, as can be seen from the formula for the 

oscillation tune ;  

2 3 4β < /

Q−

κ

κ2 3 4β > /

κ

1<
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1 2
2

2

3
2

3 2
Q G R β

κ
β

/

−

 −≈ / ≈
 − 

β  . (IV.24) 

 

V. EQUILIBRIUM EMITTANCES 

A. Scattering and straggling 

Besides the average ionization energy loss when moving through the absorber, each 

muon exchanges momentum with the atoms of the absorber, both in direction and magnitude.  

The average angular scattering from absorber nuclei and electrons is:  

 
2

2
1sc ed mZ

dz mµ

θ
γ β
+

= Λ . (V.1) 

The spread about the average energy loss is effectively only caused by collisions with electrons, 

because of the large nucleon mass relative to the electron mass:  

 ( ) ( )
2

2 2 1
4

emd
dz log mµ

γβδγ γ= + Λ . (V.2) 

It is well known that the momentum or energy spread does not include the factor of the 

Coulomb log since it is determined characteristically by interactions with the maximum 

momentum transfer.  The contribution of low momentum transfer collisions to energy diffusion 

appears insignificant, contributing at most to angular scattering and energy loss. 

Correspondingly, the energy straggling grows rapidly with the Lorentz factor of the muon beam.  

 

 B. Longitudinal equilibrium emittance, energy spread, and bunch length  

The equilibrium synchrotron emittance results from the balance between damping and 

growth rates due to both energy straggling and angle scattering.  In the vicinity of the reference 

orbit, the adiabatic invariant can be represented as a quadratic function of energy deviation from 
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the equilibrium value and reference time τ  as shown in (III.52).  Then the diffusion growth rate 

of SI  can generally be found as 

 ( ) ( ) ( )22 ˆ
2 2

S
S

d S

Qd dI t
Q dz dz

ωη δγ
ω η

′ = + δ , (V.3) 

where the straggling rate is given by formula (V.2).  The diffusion rate of t can be found using 

equation (III.34) taking into account the continuity of the total phase, 

ˆ

t krf zω − , in a collision, 

 ( ) ( )
2

2 2
2 2

ˆ
2 1 scsc

d Dt
dz dz

dδ θ
β κ

=
+

 (V.4) 

with the angle scattering rate as given by (V.1). 

Applying the Langeven balance equation: 

( )S S dSI I Iγ′ ′= −Λ + , 

we obtain the normalized equilibrium synchrotron emittance: 

 ( )
2 2

2
2 6 2 2

ˆ1 1/
4 2log

e
S S eq S d

S

m QZ DI I
m Q kγ

γ µ

ω 2

1
Sη γ κε γβ

ω γ β η κ
 Λ + +′≡< > = Λ = + Λ + 

. (V.5) 

The first term in the brackets in (V.5) corresponds to energy straggling and the second term is 

due to tω  diffusion due to scattering. 

Now, knowing the equilibrium emittance, one can easily determine the equilibrium 

energy spread and bunch length, relying on equation (III.52): 

 ( )2 S
S

Qωγ ε
η

< ∆ >=   and  2
S

SQ
ητ ε
ω

< >= . (V.6) 

 

C. Equilibrium transverse emittances 

In order to calculate the scattering rates of transverse emittances, one can use the general 

expressions (III.29), (III.30), (III.31), and (III.36), where the helix radius, , is a function of a
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total momentum, p .  Both the angle and energy scattering will contribute to the growth of 

transverse amplitudes.  Calculating the growth rate due to momentum jumps along the 2x  

direction, we have to take into account that this axis is not perpendicular to the particle total 

momentum direction, but makes an angle with it whose tangent is / zp pκ ⊥= ; thus we find:  

)22 ˆ1 D
1/

κ α + + ∓ γ

)
±

2
2 2( 1)Q lγ +

±Γ ≡

 
( ) (

2 22 2 2
2 2 2 3

2 2 2 4

1 1( ) { 1 (1 ) 1 }
( ) 2

sc
sc

dQ dk a
dz dz

κ θ κκ δ
α α α γ β

±
±

+ − ±

+   ′ = + + +  −  
. (V.7) 

Applying Langeven’s balance equations  

 2 2 ( )2
sca a a± ± ± ± ′= −Λ + , (V.8) 

we find the following expressions for the equilibrium normalized transverse emittances;  

 2 5 24 (1
emI

kQ mµ

ε
β κ

±
± ± /

±

Γ Λ/Λ
= =

+
, (V.9) 

where  

 
( )

3
2 2 3 2 2 2

2 2 1

( 1)[ (1 ) ] 1 2

ˆ(1 )

Z

D

α κ κ α κ

α κ

± ± ±

−
±

 
+ + + + − + / 

 
+ +

. (V.10) 

og

 

VI. NUMERICAL EXAMPLE OF A HELICAL CHANNEL 

Table 1 shows a numerical example of a helical cooling channel using the equations 

derived in earlier sections.  The beam momentum of 100 MeV/c is low compared to the 200 

MeV/c of earlier studies in order to attain the best transverse and longitudinal equilibrium 

emittances as well as to shorten the beam path and reduce the integrated energy loss in the 

absorber.  A rather tight helix ( ) has been chosen in this calculation to moderate the 

dispersion required for balanced cooling.  Lower dispersion improves beam stability and reduces 

the contribution of energy spread to the radial beam size, the straggling contribution to 

1κ ≈
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equilibrium transverse emittances due to dispersion (to about 6%), and the angle scattering 

contribution to the longitudinal emittance (to 33 %).  Note that the calculated 6D emittance may 

not be a minimum, although further optimization has yet to improve the estimated equilibrium 

values significantly.  The cooling effect in this calculation in terms of reduction of the 6D 

emittance is 5x105.  The total energy loss in absorber is about 1.12 GeV.  For a channel of 

continuous dense hydrogen gas with 14 MeV/m of energy loss, this implies a 6D cooling channel 

length, 21.12 / 1
.014

L κ= + = 56 m.   
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 TABLE 1.  Estimated parameters of a helical 6D cooling channel                   
                   Parameter    Unit     Initial Middle ****)       Final
Beam momentum, p   *)   MeV/c       100      100       100
Solenoid field, B         T         3.5         8              14 

Cyclotron wave length, 2 /c ckλ π=  *)        m        0.60       0.26       0.14 
Helix period, 2 / kλ π=         m          1       0.44       0.22 
Helical magnet inner radius cm         30           12          7 
Transverse field at magnet        T         1.7        4.2          7.0 
Transverse field at beam center        T         0.7        1.6        3.0 
Helix quadrupole gradient      T/m         1.2        7.5         20 
Helix orbit radius, a    *)      cm         15          6          3 
Dispersion,  D      cm         37         15        7.5 

Transverse tunes, Q Q  /+ −     0.94/0.57   0.94/0.57    0.94/0.57 

Transverse beta functions, /β β+ −       cm      16/26       6/10      3.2/5.2 
Accelerating RF field amplitude   MV/m        40         40         40 
Frequency, f= /2ω π     GHz        0.2        0.8         1.6 
Absorber energy loss rate  /dE ds   MeV/m        14         14          14 

6D cooling decrement length,  1−Λ       m                4          4          4 
Individual decrement lengths       m         12         12          12 

Synchrotron beta function, sβ        m        0.95        0.47        0.32 

Synchrotron tune, 1/s sQ ωβ=          0.25        0.12        0.08 

Synchrotron admittance, aI       cm         3.0        0.37         0.14 

Synchrotron emittance, sε       cm         1.5   **)        0.15  **)     3.10-2       ***) 
Relative momentum spread       %         7.5   **)          3     **)         2        ***)

Bunch length      cm         30    **)         7.5   **)        1.1      ***)

Beam width,  a∆      cm          3     **)        0.56  **)       0.15     ***) 

Transverse emittances, /ε ε+ −   cm x rad    1.7/1.7  **)    0.2/0.2  **)  (1/3)10-2     ***)

Beam widths, 1 2/σ σ       cm        8/5    **)    1.8/1.1  **)  0.45/0.28  ***)

 

*) reference orbit 
**) maximum deviation from reference orbit 
***)  rms equilibrium value  
****) at the beginning of the 0.8 GHz section 
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VII. DISCUSSION 

The initial low momentum muon beam with relatively small momentum spread (7.5 %) 

in the example above could be obtained using a short helical channel with an absorber but no RF.  

This possibility was proposed and treated previously [15].  Using emittance exchange in this 

precooling helical channel, all the cooling power of the absorber (with or without wedges) can be 

taken from the transverse coordinates and concentrated on the longitudinal one to cool the energy 

spread.  Maintaining the transverse emittances, or even by allowing some increase in them for 

more reduction of energy spread, it is possible to decrease the absolute energy spread by a factor 

of 10 or more before the bunch length is increased significantly.  Then, the beam can be captured 

and bunched by an RF field and injected into the basic cooling channel described by Table I.  In 

this way, the total 6D emittance reduction factor could exceed 106.  The estimated length of such 

a deceleration and capture section is less than 25 m.      

The example channel assumes smaller, higher-frequency RF cavities will be used when 

the beam dimensions have been cooled enough to allow them.  Reduced transverse dimensions 

imply that the desired strength of the magnetic fields would be easier to achieve.  Higher 

frequencies make it easier to achieve the desired RF gradients.  Short adiabatic helical transition 

sections would be used to match one stage to the next.   

In order to optimize the RF cavity acceptance, each cavity axis could be centered on and 

aligned with the periodic orbit as the beam wound around the axis of the solenoid, perhaps with 

the RF waveguides passing through the gap in the helical dipole coil.  The large aperture 

magnets and RF cavities for the 200 MHz stage may be a serious technical challenge and future 

studies will be toward replacing the initial stage with precooling sections to reduce the beam 
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size.   The precooling under consideration involves transverse cooling with a helical quadrupole 

section and longitudinal cooling in a short helical dipole section without RF.    

The estimated cooling channel length of 56 m for a bunched muon beam of 100 MeV/c 

assumes that the channel contains RF cavities that operate while filled with dense hydrogen gas.  

At 50 atmospheres and 77 K, hydrogen gas density is about 21.5% of liquid hydrogen and the 

corresponding  for muons with 100 MeV/c momentum, or 46 MeV kinetic energy, is 

about 14 MeV/m.  In this case, the RF cavities must provide sufficient gradient to compensate 

for 

/dE ds

21 κ+dE dE
dz ds

= =20 MeV/m energy loss and provide sufficient RF bucket area for 

longitudinal beam stability.  Thus an average accelerating gradient of around 40 MeV/m is 

required.   

The project by Muons, Inc. and IIT presently underway at Fermilab to develop high-

gradient pressurized RF cavities is designed to explore the use of hydrogen and helium gas up to 

more than 100 atmospheres pressure at temperature down to 77 K.  Surface gradients of 80 

MV/m for stable operation have been achieved at 800 MHz with 20 sµ pulses in hydrogen at 17 

atmospheres at liquid nitrogen temperature using molybdenum electrodes.  Scaling from the 

measured Paschen curve data from Lab G, hydrogen gas itself at 50 atmospheres and 77K will 

support gradients up to 330 MV/m.  Future proof-of-principle tests include operation in strong 

magnetic fields and in intense ionizing radiation.  Providing sufficient power is also a necessary 

condition for high gradient cavities.  A scheme has been investigated that implies that 50 MV/m 

could be generated at 200 MHz using cold copper pillbox cavities for the short pulses required 

for a neutrino factory or muon collider using pulse compression techniques [26,27]. 

A cooling channel based on the use of helical magnets and a continuous homogeneous 

absorber offers advantages compared to other designs.  One important advantage is that the 
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cooling system can be described relatively simply with a time-independent, beam-path-

independent Hamiltonian that does not depend on z.  Thus the stability and evolution of the beam 

as it cools can be understood using well-established analytical linear and perturbative non-linear 

techniques.  The next steps in the development of the concepts presented here include 

simulations to verify the linear and non-linear aspects of the beam dynamics and to continue the 

experimental investigations to the point that a complete, realistic 6D cooling channel can be 

designed, prototyped, and built.  This concept and particular example are being developed and 

simulated by Muons, Inc. and the Thomas Jefferson National Accelerator Facility [28].  A 

description of the project and a preliminary exposition of the ideas presented in this paper were 

first reported at the Mt. Fuji, Japan cooling workshop [29].   

 

VIII. CONCLUSIONS 

A magnetic channel filled with continuous absorber without special edge shaping can be 

used for emittance exchange cooling of the 6D emittance of a muon beam.  This is true for any 

magnetic arrangement where higher momentum corresponds to a longer path length in a 

homogeneous absorber and therefore larger ionization energy loss.  

The dynamical properties of an attractive example of such a channel have been 

investigated in some detail, where a solenoidal field is combined with a helical field to provide 

superior 6D cooling.  A continuous, homogenous absorber using high-gradient hydrogen-gas-

filled RF cavities could provide exceptional 6D cooling in a rather short channel. 

Six-dimensional cooling using a homogeneous absorber may be a way to achieve the 

beam brightness needed for a muon collider.  If engineering studies and simulations bear out this 

prediction, the case for a muon collider as a future energy frontier machine will be strengthened.   
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Recent discoveries have made a neutrino factory an attractive physics opportunity.  The 

6D cooling suggested here could provide a neutrino factory with superior performance and 

reduced costs.

 

IX. APPENDIX: Hamiltonian framework and canonical relationships 

Hamilton’s method provides some important relationships of beam dynamics in a 

magnetic field (or a stationary electromagnetic field).  It is based on the introduction of a 

Hamiltonian with corresponding equations of motion.  An ordinary Hamiltonian form is the 

energy function  

 2 2 2 2ˆ ( )o oE p m A P A m A= + + = − + +
GG

, 

with equations of motion  

 ˆ ( )P E P r
r

t∂
= − ,

∂
, ,

G G G� G  

and 

 ˆr E
P
∂

=
∂

G� G . 

In the case of a particle beam transported along a fixed direction , it is convenient to 

consider  as a time argument, while the time t can be treated as one of three independent 

coordinates 

z

z

x y t, , .  Hamilton’s function and equations of motion in this representation can be 

quickly derived using the covariant equation for the wave function ( )r tΨ ,
G , or the relativistic 

Schroedinger equation: 

 2 2 2ˆˆ( ) ( )oE A P A m
 
 
 
 

+ − + − Ψ = 0
GG

, 

where  
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 Ê i
t
∂

=
∂
=  and P i= − ∇

G G
=  

are the time and space components of 4-vector momentum as a quantum operator. In the 

quasiclassical limit, this equation can be rewritten, optionally, in two possible forms:  

 2 2ˆ( ) o ti P A m A
t

 
 
 
 
 

∂
Ψ = + + − Ψ ≡ Ψ

∂
H

GG
= , 

with equations of motion  

 
1 [ ] { } t

t t
HP H P H P

i r
∂

= − , = , → − ,
∂

G G� G=
 

and 

 tHr
P

∂
= ,
∂

G� G  

or  

 2 2 2ˆ ˆ( ) ( ) ( )o z zi E A m A H EP PAz
ρ

 
 

⊥ ⊥ 
 

∂
Ψ = − + − + − + Ψ ≡ , , , , Ψ

∂
t z⊥

G GG G=  (IX.1) 

 

with equations of motion  

 zP H
ρ±
∂′ = −
∂

G
G  

and 

 zH
P

ρ
⊥

∂
=
∂

G
G  

 

 
1ˆ ˆ[ ] ˆ

z
z z

HE H E t
i t E

H∂ ∂′ ′= − , = , = −
∂ ∂=

. 
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Thus, in the -representation Hamilton’s function coincides with the canonical 

momentum (with reversed sign)  taken as function of energy and transverse 

momentum according to the covariant expression .  

z

z zP p A= + z

22 2E p m− =

For a helical structure, it is convenient to consider particle dynamics in terms of a helical 

frame 1 2( , , )x x z , with  

 1 2 ( ) ikzx ix x iy e−+ = + . (IX.2) 

The new Hamiltonian and equations of motion can be simply found using the wave equation in 

(IX.1), taking into account that  

 1 2
1 2

x ye e e e
x y x⊥ x
∂ ∂ ∂

≡ + = +∇
∂

∂ ∂ ∂ ∂
G G G G G

 

and 

 1 1 2 2P e P e P⊥ = + ,
G G G

 

while  

 1 2 1 2
2 1

( ) ( ) ( )x y z kx kx x x z
z z x x
∂ ∂ ∂ ∂
Ψ , , = + − Ψ , ,

∂ ∂ ∂ ∂
. 

Thus, the new Hamiltonian is:  

 2 2 2 2
1 1 2 2 2 1 1 2

ˆ( ) ( ) ( ) (h o zH E A m P A P A A k x P x= − + − − + − + + + − )P  (IX.3) 

This is the so-called helical invariant.  Since the components of the vector potential  are 

functions of only 

1 2 zA A A, ,

1 2x x,  (i.e. ρ  and kzψ ϕ≡ −

E

), the Hamiltonian  is conserved for any 

particle trajectory, together with the energy  (assuming no RF and space charge forces).  

hH

Solving the equations of motion in a helical structure, one can find the generalized phases 

 and adiabatic invariants (quantum numbers) ±Ψ I±  as functions of 1 1 2 2x P x P E, ; , ; . In these 

variables, the Hamiltonian (IX.3) is a function of only I I+ −, , and :  E
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 ( )hH I I EI
ψ± + −

±

0∂
= , , =′
∂

 

and 

 ( ) ( )hH E I I kQ E I I const
I

ψ + − ± + −±
±

∂′ = , , = , , =
∂

. (IX.4) 

The energy , being a global invariant in a magnetic field, is not redefined, but there 

should appear a new time variable t  as a canonical phase with a constant rate:  

E

ˆ

 ˆ ( )ht H E I I const
E + −
∂′ = − , , =
∂

, (IX.5) 

while the time  on a particle trajectory can be considered as a function of all the “new” 

variables including t  and . There is a set of differential relationships between the “new” and 

“old” canonical variables [30].  For our situation, the important relationships are:  

t

ˆ E

 
I
P

ρ
ψ

±

⊥ ±

∂ ∂
=

∂ ∂
 (IX.6) 

and 

 
I t
E ψ
±

±

∂ ∂
= −

∂ ∂
. (IX.7) 

These can be simply proved comparing the Poisson brackets { }I ρ±,
G  and { }I t± ,  in terms of “old” 

and “new” variables.  

In order to find the dynamical sense of , one has to integrate the equation  t̂

 
( )211

z

t
ρ

β β

′+
′ = =

G
 

along a solved particle trajectory.  The inverse particle velocity 1
zβ
−  can be represented as  

 
11 1

z z zβ β β
−− −=< > + � ,  
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where 1
zβ
−�  oscillates as a function of ψ ψ+ −, :  

 
1 0zβ
−< >= .�  

Note that 1 1z zβ β−< >= / < > . 

If we introduce the waving fraction of time, t , as  �

 ( )t t t ψ ψ+ −=< > + ,� , 0t< >=� , 

where 

 1 ( )z t k Q Qβ −
+ −

+ −

t∂ ∂′= = +
∂Ψ ∂Ψ

� � �   ,    

then the variable t  can be identified as  ˆ

 ˆ ( )t t t ψ ψ+ −= − ,� .  

This can be proved by comparing equation (IX.5) to the equation for the original time:  

 ˆ( )h
I I t tt H E I I t kQ

E E I E I
kQ

ψ ψ
+ −

+ − + −
+ − +

 ∂ ∂∂ ∂ ∂ ∂′ ′= − + + , , = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂  −

∂
. 

Note the important relationships which follow from equations (IX.4) and (IX.5):  

 
1

z

k Q
I Eβ ±
±

∂ ∂
= −

∂ < > ∂
. (IX.8) 

These show that the so-called slippage factors, i.e. emittance-related dispersion of the translation 

velocity zβ< > , are simply proportional to the chromaticity of particle tunes [20,21]. 

To determine the time t  as function of “new” variables ( )a ψ± ±, , one has to integrate the 

equation  

 
21 1 ˆ ˆ1

z

t x
β β

′ ′= = + + ikx  
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along a “solved” particle trajectory.  In linear approximation for free particle oscillations near the 

helical orbit  we have  ( )a p z,G

 
2

21
2

( )1
1

ku ut κκ
β β κ

++ ′′ ≈ +
+

. 

To integrate u , we have to substitute  as the solution shown in (III.26):  1 1u

 1 ( ) a adz u a cos a cos dz sin sin
kQ kQ

ψ ψ ψ+ −
+ + − − +

+ −

⋅ = + = +∫ ∫ ψ− . 

Then we obtain equation (III.33).  The derivatives 
2a

E
±∂

∂
 can be found using the relationships in 

(III.27) through (III.30), in which the variables of the rotating frame 1 1 2 2( )x x x x′, , , ′

y

 are to be 

considered as functions of ( ) ( )xx p y p, , , , and energy :  E

 1 2ˆ ( ) ikzx x ix x iy e−≡ + = + , 

 1 2 2 2

( )
ˆ ( )

ikz
x yikz

x y

p ip e
x x ix ik x iy e

E m p ip

−
− +

′ ′ ′≡ + = − + +
2− − | + |

. 

Thus, we find 

 
ˆ

0x
E
∂

=
∂

 and 2

ˆ ˆ ˆ

z

x x ikx E
E p
′ ′∂ +
= −

∂
. (IX.9) 

In first approximation, if we neglect the deviations off the equilibrium orbit on the right hand 

equation in (IX.9), then  

 21 2
2 20 (
z

x x ka kaE
E E p E

1 )κ
β

′ ′∂ ∂
= , = − = − +

∂ ∂
. 

Now, we can take the derivatives:  

    
2

2 22 1
2 2 2

ˆ( ) [ 1 ]22 (1 )
( )

x k x a Dka kda aa a
E E dp E

α α
cos

κ
κ α ψ

α α β β β α α± ±
+ − + −

′ − − − − ∂
= − + + = ± ∂ − − 

∓ ∓
± ± .   (IX.10) 
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Finally, using the relationship in (III.24), we find equation (III.35).  
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