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Abstract 
 
In this note we present the analytical equations for ionization cooling performance and apply 
them to recently developed storage ring cooling systems designed to cool muons transversely and 
longitudinally.  Expected cooling properties are calculated and variations that may improve 
cooling performance are discussed.  
 
Introduction 
 
Recently A. Garren, H. Kirk, and Y. Fukui[1] have initiated a study of a ring cooler designed to 
cool both longitudinally and transversely, using quadrupoles for focusing and hydrogen wedge 
absorbers for cooling.   
 
In this paper we present some calculations of cooling parameters, rates, and equilibrium 
emittances for  this initial cooling ring. 
 
 
 Energy Cooling equations  
 

The basic equations for transverse and longitudinal equations have been presented in previous 
references.  The differential equation for rms transverse cooling is [2, 3, 4, 5, 6, 7]: 
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where the first term is the energy-loss cooling effect and the second is the multiple scattering 
heating term.  Here εN is the normalized transverse emittance, E is the beam energy, β = v/c and γ 
are the usual kinematic factors, dE/ds is the energy loss rate, θrms is the rms multiple scattering 
angle, LR is the material radiation length, β⊥ is the betatron function, and Es is the characteristic 
scattering energy (~13.6 MeV).[7] (The normalized emittance is related to the geometric 
emittance ε⊥ by εN = ε⊥/(βγ), and the beam size is given by σx = (ε⊥β⊥)½.) 

The equation for longitudinal cooling with energy loss is: 
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in which the first term is the “cooling” term and the second is the heating term caused by random 
fluctuations in the particle energy. Beam cooling can occur if the derivative ∂(dE/ds)/∂E > 0.  This 
energy loss can be estimated by the Bethe-Bloch equation[8]: 
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where NA is Avogadro’s number, ρ, A and Z are the density, atomic weight and number of the 
absorbing material, me and re are the mass and classical radius of the electron, (4πNAre

2mec2 = 0.3071 
MeV cm2/gm).  The ionization constant I is approximately 16 Z0.9 eV, and δ is the density effect 
factor which is small for low-energy µ′s. (δ = 0 is used in this paper.)  The energy loss as a function 
of  pµ is shown in Fig. 1.  The derivative is negative (or naturally heating) for Eµ < ~ 0.3 GeV, and is 
only slightly positive (cooling) for higher energies.  

In the long-pathlength Gaussian-distribution limit, the second term in Eq. 2 is given 
approximately by[9]: 
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where ne is the electron density in the material (ne=NAρZ/A).  This expression increases rapidly 
with higher energy (larger γ), opposing the cooling process. After adding this energy straggling, 
ionization cooling does not naturally provide adequate longitudinal cooling. 
 

However, the cooling term can be enhanced by placing the absorbers where transverse 
position depends upon energy (nonzero dispersion) and where the absorber density or thickness 
also depends upon energy, such as in a wedge absorber.(see fig. 4-3)  In that case the cooling 
derivative can be rewritten as: 
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where ρ′/ρ0 is the relative change in density with respect to transverse position, ρ0 is the reference 
density associated with dE/ds, and η is the dispersion (η = d x /d(∆p/p)). Increasing the longitudinal 
cooling rate in this manner decreases the transverse cooling by the same amount.  The transverse 
cooling term is changed to: 
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Note that the coupled transverse cooling (and heating) changes occur in the same direction (i.e. 
horizontal or vertical) as the dispersion and wedge.  However the sum of the cooling rates (over x, y, 
and z) remains constant.  This sum can be represented, as with radiation damping, as a sum of 
cooling partition numbers, where the partition number is defined as the ratio of the cooling rate to the 
fractional momentum loss rate. For x and y emittance cooling the partition numbers are both 
naturally 1: 
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 The partition number for longitudinal cooling is given by 
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This can be evaluated for the Bethe-Bloch dE/ds formula (with δ = 0, and no dispersion and wedge 
absorbers) as: 
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where K = 2mec2/I.  With the wedge at nonzero dispersion, gL=gL,0 + ηρ′/ρ0, and the transverse 
partition number in the wedge plane gx becomes:   
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The sum of the partition numbers Σg = (gx + gy + gL) is a function of muon momentum, and is 
displayed in figure 2.  Σg is approximately 2 for Pµ > 0.3 GeV/c, but is smaller for lower energies.  
 
 In longitudinal phase space, there are two rms heating terms to be considered: 

1. The energy straggling term shown in eq. 4 (which is proportional to γ2, and therefore larger 
for higher-energy beams), and  

2. the anti-damping due to a negative partition number, which occurs at low momenta  (Pµ < 
~0.35 GeV) where the Bethe-Bloch formula has a negative derivative. 

Effective longitudinal cooling requires opposing the sum of these heating effects with dispersion-
wedge absorbers.  We hypothesize that the task of energy cooling would be relatively easy at 
energies where the sum of these is minimized.  The relative magnitude of these depends on the beam 
energy spread; however in Fig. 3 we display the two terms at ∆Eµ  =  20 MeV (for Be absorbers), a 
typical muon source energy spread.  The sum is minimized at Pµ  ≅ 400 MeV/c, within a relatively 
broad range of  Pµ  ≅ 300 to 500 MeV/c.  The heating terms do become dramatically larger outside 
that range, for both smaller and larger momenta. 
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Longitudinal Betatron Functions 
 
The longitudinal equations of motion for muons in a storage ring are: 
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Energy offset (∆E) and particle rf phase (φ) are used as variables.  In these equations, V′ = 
Vrf/Cring is the average acceleration gradient in the ring, λ0 is the rf wavelength, φs is the rf phase 
of the reference bunch particle.  (V′ cos φs is the mean energy loss rate in the absorber: V′ cos φs 
= dE/ds Labsorbers/Cring.) Also (αp=1/γ2-1/γt

2) is the frequency slip factor.  From these coupled 
equations, we can define a longitudinal “betatron function” βφ as: 
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Assuming the longitudinal motion is near-equilibrium (〈φ ∆Ε〉 = 0), the longitudinal rms 
quantities are: 
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This obtains an invariant emittance in energy units (i. e., MeV).  Changing to length units requires 
multiplying by the wave number (λ0/2π) and dividing by the muon rest energy (105.66 MeV/c). 
 
 With these parameters, we can now define a cooling equation in longitudinal emittance.  This 
is simply: 
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From this equation an expression for the equilibrium longitudinal emittance εL,eq can be obtained: 
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Similarly an expression for the equilibrium transverse emittance can be obtained: 
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RF Bucket Acceptance  
 
Another important criteria for a storage ring is the longitudinal acceptance (rf bucket size) of the 
rf system.  From the equations of longitudinal motion a stable region is defined by the equation of 
the separatrix: 
 

       [ ]))sin()(sin(cos)(
2

mcVe
2

)E(
s0sso

p

32
0

2

φ+φ−φ+φ+φφ−φ
πα

γβλ′
=

∆     (17) 

 with φ0 = –2 φs defining the separatrix boundary.  The limits in energy spread are defined by: 
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This acceptance can become very restricted for lower energy muon beams.  For the parameters of 
Table 1, ∆E = 36 MeV, 100 MeV and 300 MeV are obtained for 250, 500, and 1000 MeV/c 
beams, respectively.  The rf bucket for the 250 MeV/c beam is uncomfortably small compared to 
the injected beam sizes.  
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Example: Application to the Garren-Kirk cooling ring 
 
We can now apply the parameters of the Garren-Kirk cooling ring to these formulae to develop an 
understanding of expected cooling performance at its parameters. In initial studies the beam 
central momentum was set to Pµ = 250, 500 and 1000 MeV/c. The ring lattice has a cell length of 
Lcell=10.55m, with 8 cells required to complete a full turn. Cell lattice parameters are shown 
graphically in fig. WWWW. 
  
 The lattice includes a liquid hydrogen absorber of length 25cm (dE/ds=0.3 MeV/cm) with 
wedges at the entrance and exit of θ = 10°.   The dispersion η at the absorber is 45cm, while the 
betatron function β⊥ is 25 cm at the center of the absorber (mean value of 27cm in the absorber).  
The total rf per cell is 20 MV, so the equilibrium phase is obtained from cos(φs) = 7.5/20, which 
implies sin(φs) = 0.927.  Also γt =32.1 in this lattice.  γt is a critical parameter in setting the 
properties of the longitudinal motion.  The rf bucket is relatively restricted in the case with Pµ =  
250MeV/c, where the rf bucket extends over ∆E = ±35MeV.     The rf bucket acceptance is ∆E = 
±100MeV for Pµ = 500MeV/c and ∆E = ±290MeV for Pµ = 1000MeV/c. 
 
 In emittance exchange calculations a critical parameter is the change in partition number due 
to the wedges. That factor for our example is: 
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which is 0.635 at these parameters.  This implies that gx is reduced to ~0.365 in our baseline 
example. This means that the equilibrium  x-emittance is almost three times larger than the 
equilibrium y-emittance.  In some early simulations that equilibrium emittance is larger than the 
acceptance; this means that the ring would have large transverse losses.    
 
Table 1 displays some key cooling parameters for the parameters of the Garren-Kirk cooling ring; 
the table displays parameters for Pµ = 250, 500, and 1000 MeV/c.  The cooling performance 
under ICOOL simulations closely  
 
Discussion 
 
Some guidelines for expected performance and future design improvements can be obtained from 
these evaluations.    
 
At 250MeV/c, the unperturbed partition number gL,0 is negative (~ -0.16), or anti-damping, which 
increases the difficulty of cooling.  This difficulty increases at lower momenta (at 200 MeV/c gL,0 
is ~ -0.3 and at 150 MeV/c it is ~-0.5).  This anti-damping is also somewhat exacerbated by the 
energy spread; lower energy particles in the distribution receive relatively large anti-damping and 
can be lost before synchrotron oscillations return the particles to higher energies.  As discussed 
above, longitudinal cooling is probably optimal at slightly higher energies. 
 
In Table 1 we have assumed the dispersion/wedges are horizontal  and x and y motions are 
decoupled.  A lattice with x-y rotation between bends (solenoid or skew-quad) could exchange x 
and y motions between wedges and therefore share the partition number changes equally between 
x and y.  This may be suggested for future studies, particularly since the anti-damping places the 
horizontal beam size (“cooled” equilibrium) quite large, and actually larger than the ring 
acceptance in an initial lattice.[1] 
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For optimum acceptance the beam should be matched to the ring properties when injected into the 
ring.  (Losses due to longitudinal mismatch are seen in some early examples [1].)  In particular 
bunch length and energy spreads must be matched into the stable injection bucket.  The factor βφ 
identifies the matched ration of bunch length to energy spread. (see eq. 12 and Table 1.)  For 
example, at the parameters of Table 1, a bunch with rms energy spread δE of 20 MeV would have 
a matched rms bunch length (cτ) of  19.6, 9.9 and 2.34 cm  for 250, 500 and 1000 MeV/c beams, 
respectively.  
 
The initial simulation results support the rms analysis discussed here.  Future versions of ring 
coolers can use these rms formulae as guidelines to ensure that the cooling rings have adequate 
longitudinal and transverse acceptances for matched cooling and that the injected beams are 
matched to the cooling ring parameters.   
 
 
 
 
 
Table 1: Cooling Parameters for the sample cooling ring 
        
Pµ gL,wedge gL,0 d(∆E2)/ds βφ εy.eq. εL,eq εx.eq. 

MeV/c   MeV2/m MeV-1 cm cm cm 
250 0.635 -0.160 0.042 0.0411 0.103 0.31 0.282 
500 0.635 0.0604 0.136 0.0144 0.099 0.52 0.271 
1000 0.635 0.114 0.509 0.0049 0.091 1.18 0.250 
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Figure 1. 
dE/dx for various materials from ref. ().  Note that the derivative of dE/dx with respect to Pµ is 
strongly negative (naturally heating) for Pµ < ~ 400 MeV/c and is only slightly positive for larger 
Pµ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Partition numbers (in Be) as a function of muon momentum Pµ.  Σg is the sum of x, y 
and z  partition numbers,  gL = gz = Σg – 2 is the longitudinal partition number.  
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. 
Figure 3: Energy-spread heating terms in ionization cooling. 
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Figure 4. Lattice functions for a cell of a cooling lattice. 
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